viernes, 15 de mayo de 2015
Los estudiantes aprenden mejor de pie y no sentados Domingo 10 de mayo del 2015 | 13:37
Estar parado también contribuye a reducir la obesidad, porque se quema un 15% más de calorías que cuando se está sentado
A la hora de aprender, la postura importa. Los estudiantes piensan mejor de pie que si se sientan en una silla. Ese es el hallazgo de un nuevo estudio publicado en la revista International Journal of Health Promotion.
Seguir a @tecnoycienciaEC
Los seres humanos, indica la investigación, prestamos más atención y nos sumergimos más en el aprendizaje cuando nos encontramos de de pie que cuando estamos sentados, con las manos cruzadas y la espalda encorvada.
Si se aprendiera mientras se está parado, el resultado, dicen los científicos, equivaldría a sumar 7 minutos más a cada hora de participación en un entorno académico.
Para demostrarlo, Mark Benden y sus colegas del Centro de Salud Pública de la Universidad de Texas A&M trabajaron con casi 300 alumnos de primaria durante un año escolar cambiado el mobiliario tradicional de pupitres por escritorios de pie, que son muebles altos con bancos que permiten a los estudiantes elegir si prefieren permanecer de pie o sentados.
Aunque originalmente estos muebles fueron implementados en las aulas para reducir la obesidad infantil, el experimento ha demostrado que este cambio de mobiliario podría acompañarse también de beneficios cognitivos y contribuir al éxito académico.
Estudios previos de este equipo habían demostrado que los escritorios para trabajar de pie pueden ayudar a reducir la obesidad porque permiten quemar un 15 por ciento más calorías que cuando se estudia sentado.
Según el equipo de investigadores, las estaciones de trabajo en las que se puede estar de pie disminuyen el déficit de atención al proveer un método diferente que rompe con la monotonía del trabajo tradicional.
Domingo 10 de mayo del 2015 | 09:33
El 'Einstein' olvidado de EscociaSe llama James Clerk Maxwell, y gracias a él tenemos fotos a color, radio, tv, celulares, wifi y tanto más. ¿Lo conoces?
(Foto: BBC)
"Una época científica terminó y otra empezó con James Clerk Maxwell", dijo Albert Einstein. Heindrich Hertz, físico alemán, le llamaba 'Maestro Maxwell'. Como muchos otros científicos, pensaban que el escocés era un genio. Pero también es uno de los más desconocidos científicos famosos.
Seguir a @tecnoycienciaEC
El 'Maestro Maxwell' realizó un pionero trabajo sobre la naturaleza de la luz; el cual ha hecho posibles tecnologías de las que dependemos en la actualidad, como celulares, wifi, escáneres, hornos microondas, la radio y la televisión.
Además, su fascinación por el color resultó en la creación de la primera foto a color de la historia.
Pero, ¿quién era y por qué es tan admirado por sus pares? Su historia empezó en Escocia en el siglo XIX, más precisamente en Edimburgo, donde nació en 1831.
Desde pequeño era tan curioso que su tía decía que "era humillante que un niño te preguntara tantas cosas que uno no podía responder".
Ese afán por saber y un talento especial para resolver complicados acertijos hizo que empezara a sorprender a sus contemporáneos desde que era joven, como señala Howie Firth, un científico que conoce muy bien la vida de Maxwell.
"En su tiempo libre experimentaba con las curvas que podía dibujar, usando lápices, alfileres e hilos. Así descubrió una nueva regla sobre el tipo de patrones. Presentó el resultado de ese experimento en la Sociedad Real de Edimburgo (la academia nacional de ciencias y letras) cuando tenía 14 años de edad".
Cuando terminó la escuela fue a la universidad, donde su padre quería que estudiara derecho, pues en esa época la ciencia no era considerada como una profesión. Por fortuna, el sistema de educación escocesa de entonces estaba diseñado para que los estudiantes pudieran desarrollar su todo su potencial.
Los anillos de Saturno
La ciencia en esa época estaba muy influida por la obra de Isaac Newton, quien un siglo y medio antes había formulado sus tres leyes de movimiento y una teoría unificada de la gravedad, que explicaba tanto lo que sucedía en la Tierra como en los cielos.
Maxwell las absorbió y, unos años más tarde, las usó para resolver un gran enigma sobre el planeta Saturno.
"Se sabía que Saturno tenía anillos y que eran muy delgados, pero no se sabía de qué estaban hechos", le cuenta a la BBC Martin Hendry, de la Universidad de Glasgow.
(Foto: NASA)
Sin una nave espacial que pudiera ir a ver, las posibilidades de saberlo eran casi nulas. Pero se abrió una competencia para revelar el misterio y Maxwell decidió intentarlo.
"Lo que hizo fue tratar de entenderlo matemáticamente: si los anillos fueran sólidos, ¿podrían existir o los destruiría la fuerza de la gravedad? Así pudo demostrar que lo último era verdad, que la gravedad no permitiría que un cuerpo tan delgado orbitara Saturno... se partiría. Lo que realmente predijo es que los anillos estaban compuestos de enormes cantidades de pequeñas partículas individuales que flotaban alrededor del planeta, y que aparentaban ser anillos sólidos sólo al observarlos desde tan lejos", explica Hendry.
Su cálculo dejó a todo el mundo impresionado. George Biddell Airy, el Astrónomo Real de Inglaterra, lo describió como "una de las aplicaciones de matemáticas a la física más extraordinarias que jamás he visto".
Hoy en día, estamos seguros de que su respuesta fue la correcta gracias al viaje de la nave espacial Voyager, que sobrevoló Saturno. Y lo más impresionante es que las imágenes que confirmaron que lo que Maxwell había dicho hace tanto era cierto sólo pudieron llegar a la Tierra gracias a su descubrimiento más trascendental: las ondas electromagnéticas.
Dos grandes rompecabezas
El magnetismo y la electricidad eran en ese entonces grandes desconocidos.
En Londres, otro científico, Michael Faraday, estaba haciendo todos los experimentos posibles para explorarlos.
Había desarrollado aplicaciones prácticas como el dínamo y el motor, y logró entender detalladamente ambos fenómenos, aportando mucho a la manera en la que los concebimos.
"Él enfocó la atención no tanto en el imán sino en el espacio que lo rodea. Dijo que no era sólo un pedazo de hierro, sino algo más complejo: es el centro de un sistema de invisibles tentáculos curvos que se extienden para atraer o rechazar otros imanes o metales. A ese sistema lo llamó 'campo'", explica Firth.
En la actualidad, estamos acostumbrados a la idea de que haya campos, o campos de fuerza, gracias a historias de ciencia ficción como "Doctor Who" o "Viaje a las estrellas". Pero en el siglo XIX era un concepto totalmente radical.
(Foto: Thinkstock)
Lo que Faraday estaba diciendo era que lo que parecía como un espacio vacío, pero que tenía algo adentro.
Y agregó que lo mismo ocurría con la electricidad: si se estaba viajando por un cable, habría un campo de fuerza alrededor.
Así, entendió que el magnetismo y la electricidad tenían que estar conectados de alguna manera, pues descubrió que se alteraban mutuamente y que cuando se les unía, los dos campos se combinaban y vibraban con energía.
Esa vibración creaba ondas, a las que llamó electromagnéticas, que se propagaban en el espacio como al tirar una piedra al agua.
¡Se necesita otro genio!
Pero Faraday no pudo ir más lejos. Como era autodidacta había llegado al límite de sus capacidades: sencillamente, no contaba con los conocimientos académicos necesarios.
"Faraday dio un paso gigante para hacer por la electricidad y el magnetismo lo que Newton había hecho por la gravedad. Lo que faltaba era matemáticas. El contacto con Maxwell se desarrolló primero por correspondencia y Faraday estaba muy contento por haber encontrado a un matemático tan extraordinario.
Maxwell aceptó el reto, hizo varios modelos en su mente y encontró la respuesta", indica Firth. Y ésta fue magnífica.
El científico escocés redujo toda la información a unas pocas líneas matemáticas que mostraban cómo la electricidad y el magnetismo estaban conectados, y que los dos juntos -electromagnetismo- podían crear diferentes tipos de ondas que iban a la misma velocidad, la velocidad de la luz.
Ilustración de Maxwell investigando magnetismo y luz. (Foto: Getty Images)
Reveló también que la luz que los humanos podíamos detectar -la que llamamos 'visible'- era sólo una parte de la gama de ondas electromagnéticas, que incluyen ondas de radio, microondas, rayos X, rayos Gamma.
Un enorme salto en el conocimiento... en apenas cuatro cortas ecuaciones que muchos consideran una obra de arte matemático.
Pasarían décadas...
"Pasó mucho tiempo antes de que los otros científicos aceptar que era una buena idea. Era demasiado radical", señala Hendry.
"Tomó casi 15 años antes de que alguien pudiera mostrar que ese concepto matemático era algo físico que se podía medir y producir en un laboratorio", dice Claire Quigley, tecnóloga del Centro de Ciencia de Glasgow.
"El científico Heinrich Hertz produjo ondas de radio, tal como Maxwell predijo, las midió y confirmó que iban a la velocidad de la luz. Pero, aunque se complació por haber probado que Maxwell estaba en lo cierto, cuando le preguntaron cuáles eran las ramificaciones, respondió que ninguna", añade Quigley.
No obstante, apunta Hendry, "abrió el camino para que un científico realmente brillante, Einstein, tomara las ideas de Maxwell y las desarrollara hasta llegar a su teoría de la relatividad"
"Y unos 150 años después -agrega- en la física de partículas hablamos del 'campo de Higgs', que tiene que ver entender las propiedades fundamentales de las partículas del Universo. Así que esa idea de un 'campo' sigue abriendo caminos".
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario